Непосредственное вычисление спектральной плотности для абсолютно интегрируемой функции.
Функция F(iu) может быть представлена, как комплексная функция действительной переменной
(7)
|F(iu)| - амплитудное значение спектральной плотности, y (u) – фазовый угол.
В алгебраической форме : F(iu) = a(u) +ib(u)
(8)
(9)
Для непосредственного вычисления спектральной плотности вычисляется интеграл (6), а затем по формулам (8) и (9) определяется амплитудное значение |F(iu)| и фазовый угол y (u).
Пример.
Найти спектральную
плотность импульса :
откуда , далее
Отыскание спектральной плотности для неабсолютно интегрируемых функций.
Прямое преобразование Фурье для таких функций не существует, существует преобразование Лагранжа.
Прямое преобразование Фурье необходимо :
1) Для облегчения процесса решения дифференциальных и интегральных уравнений.
2) Для исследования амплитудной и частотной характеристик спектральной плотности, определенной всюду на числовой оси.
Введем следующее определение спектральной плотности для неабсолютно интегрируемых функций:
Если для заданной функции y=f(t) существует непрерывное изображение по Лапласу F(p), то спектральной плотностью функции называется изображение функции по Лапласу при p = iu.
Спектральной плотностью F1(iu) неабсолютно интегрируемой функции называется предел от спектральной плотности F2(iua) абсолютно интегрируемой функции.
Интересно знать
Обратное преобразование Лапласа.
- Это прямое преобразование Лапласа.
Обратное
преобразование есть возможность получить функцию-оригинал через известную
функцию-изображение :
, где s –
некоторая константа.
Пользоваться
формулой для обратного преобразования можно при определенном виде функции F(p),
либо для численного нахождения функции- ...
Изображение функции с измененным масштабом независимого переменного.
где а – константа.
Таким образом
:
и ...